<<<  This discussion is now closed  >>>

Growing water crises have drawn attention to the promise of water reuse. When safely treated and well-integrated in water planning, treated effluents are a reliable water resource that can alleviate water shortages and offer a source of nutrients to agricultural lands (Sadoff and Jagerskog, 2017). However, while undoubtedly desirable, implementing reuse policies and projects comes with tremendous governance challenges.

Lebanon illustrates this well. It is plagued by water shortages resulting from a policy focused on full cost recovery and commercialisation and privatisation of services (see Alles, 2019; Eid-Sabbagh, 2015; Riachi, 2014). After 30 years of reconstruction and institutional reforms, public supply of municipal or agricultural use does not approach meeting the demand and remains unreliable, while private supply, coupled with the state's inability to regulate, has led to degradation of the resource, falling groundwater levels and social conflict.

Notwithstanding some USD 1.5 billion investments in the wastewater sector over the last 30 years, only 25-30% of wastewater is actually treated. Of this, only around 10% (or about 80,000 m3/day), receives secondary or tertiary treatment. In this context, safe water reuse in agriculture is presented as an opportunity to increase water for irrigation, as well as providing additional revenue for water utilities.

A recent IWMI study conservatively estimated that some 2200 ha could "potentially" be irrigated safely with treated wastewater in Lebanon (Eid-Sabbagh et al., 2021). It identified wastewater treatment sites that have "technical" characteristics that are conductive for the implementation of reuse systems. Most (61) are small plants with design capacities below 1500 m3/day managed by municipalities, half of which (30) are out of operation. The five largest wastewater treatment plants (WWTPs) have a combined design capacity of 400,000 m3/day of which only 35,000 m3/day are situated inland. The others are situated along the coast and have little agricultural area nearby.

The defined " potential" is an abstract measure. If it remains divorced from social and political reality, it is little more than an estimate of available wastewater related to estimated irrigation requirements.

The implementation of a policy for water reuse in irrigation is hampered by institutional overlaps and inter-agency competition that finds its roots in a sectarian political system premised on the need for consensus among parties. Chronic political gridlock is the result. This underlies the difficulties involved in producing and implementing a coherent national master plan and allocate the necessary budget, and the dynamics of competition over resources and administrative territories. For example, the Litani River Authority felt threatened by the possibility of the reallocation of freshwater resources under its purview and rejected any cooperation on wastewater reuse within irrigation networks under its management (Nassif, 2019).

Furthermore, planning is largely focused on infrastructure construction while management issues are largely neglected. Regional Water Authorities (RWEs) are legally charged with management of wastewater and irrigation in addition to water supply. But their human resources and organisational capacities are limited. Only one out of four RWEs has an organisational chart with provision for wastewater management; irrigation management is absent in all of them. All RWEs are seriously understaffed.

All RWEs are chronically underfunded as a result of an approach that unrealistically targets full cost recovery for services based on users' fees. RWE collection rates range from 30% to 78% and averaged just 50% of expected revenue in the years until 2019. RWEs have also been unable to take over the responsibilities of managing WWTPs because of their inability to carry the financial burden of these energy-intensive, complex-to-monitor infrastructures.

The recent financial, economic, and political crisis has compounded these challenges. RWE revenues have almost completely collapsed with the rapid impoverishment of the population while the costs of imported materials needed for operation and maintenance have risen in proportion to hyperinflation, making spare parts and fuel unaffordable.

Beyond the technical necessities, water reuse itself faces water allocation challenges at the local level. These are related to interpretations of water rights, the organisation of irrigation management, and the definition and perception of socially just distributive mechanisms. Since most treated wastewater produced inland and discharged into rivers is already reused further downstream, reallocating treated wastewater is problematic. Analysis of seven case studies shows that both raw and treated wastewater are claimed based on specific interpretations of customary or legal rights. In one case, farmers broke collector pipes of a newly built WWTP to reclaim their original source of irrigation water. In another, an interruption of treatment maintenance reasons led to complaints against the managing municipality because it interrupted treated water flows downstream in an adjacent municipality. Finally, social conflict may emerge over who gets access to reused water by the irrigation network water guardian or at an earlier stage at the conception of water reuse projects. These difficulties remain formidable for RWEs and the Ministry, which is susceptible to the influence of local notables and large landowners.

Depicting water reuse as a massive opportunity appears to be overly optimistic. Both the untreated and treated wastewater disposed in rivers is mostly used downstream indirectly – it is not "new" water. Lebanon's water reuse potential measured in ha remains an abstraction as its materialization would require in-depth policy and institutional transformation. Unfortunately, the Lebanese state seems to be poorly equipped to do so.

The complex politics of water reuse are not unique to Lebanon. In Egypt, the formal and informal reuse sectors exist side by side; much water is already reused. More importantly, efforts to move reuse "into the formal sphere" carries the danger of neglecting potentials and solutions to promote and improve reuse (Tawfik et al., 2020). A case study in Jericho (Palestine) identified unclear water rights among local communities as a major obstacle for the reuse of wastewater (Al-Khatib et al., 2017).In Hyderabad, India, the Musi river running through Hyderabad consists only of raw and partially treated wastewater outside the monsoon season. It is used for irrigation through various socio-technical arrangements that are vulnerable to conflict (Keremane, 2017).

A realistic understanding of potential can only emerge from an analysis of institutional capacity to implement concrete projects (Beveridge et al., 2017) that does not consider wastewater reuse as a depoliticised technical issue and takes full account of the institutional and political context.

Karim Eid-Sabbagh and Marie-Hélène Nassif


Dr Karim Eid-Sabbagh is an independent researcher and documentary filmmaker based in Lebanon. His research focuses on political ecology, imperialism and sovereign development, water resource management, and agrarian transformation in social formations of the Global South. 

Dr. Marie-Helene Nassif is a Lebanese researcher in the fields of water and irrigation governance. She is interested in multi-disciplinary and systemic approaches of water management and policy analysis. She privileges and enjoys empirical research methods and has extensive experience about the Bekaa plain agrarian and hydraulic history. She currently works as a consultant with IWMI as the national coordinator of the regional ReWater MENA project.

Disclaimer

The views expressed here are solely those of the authors and do no represent any organization.

References

Al-Khatib, N.; Shoqeir, J. and Ozerol, G. 2017. Governing the reuse of treated wastewater in irrigation: the case study of Jericho, Palestine. Int. J. Global Environmental Issues, Vol. 16, Nos. 1/2/3, pp.135–148.

Allès, C. 2019. La dimension spatiale de l'État au Liban. Une analyse à partir des politiques publiques de l'eau potable et de l'assainissement (Doctoral dissertation, Université de Nantes).

Beveridge, R., Moss, T. and Naumann, M. 2017. Sociospatial understanding of water politics: Tracing the multidimensionality of water reuse. Water Alternatives, 10(1), 22-40.

Eid-Sabbagh, K.P. 2015. A political economy of water in Lebanon: water resource management, infrastructure production, and the International Development Complex (Doctoral dissertation, SOAS, University of London).

Eid-Sabbagh, K.P., Roukos, S., Nassif, M.-H., Velpuri, N. and Mateo-Sagasta, J., (Forthcoming). Analysis of Water Reuse Potential for Irrigation in Lebanon. International Water Management Institute, Colombo, Sri Lanka.

Keremane, G. 2017. Governance of urban wastewater reuse for agriculture: a framework for understanding and action in metropolitan regions. Springer.

Nassif, M-H. 2019. Analyse multi-scalaire des politiques et de la gouvernance de l'eau dans le bassin du Litani, Liban (Doctoral dissertation, Université Montpellier 3.

Riachi, R. 2013. Institutions et régulation d'une ressource naturelle dans une société fragmentée: Théorie et applications à une gestion durable de l'eau au Liban (Doctoral dissertation, Université de Grenoble).

Sadoff, C. and Jagerskog, A. 2017. Game-changing water solutions for the Middle East and North Africa. Water blogs- World Bank. https://blogs.worldbank.org/water/game-changing-water-solutions-middle-east-and-north-africa.

Tawfik, M. H., Hoogesteger, J., Elmahdi, A. and Hellegers, P. 2021. Unpacking wastewater reuse arrangements through a new framework: insights from the analysis of Egypt. Water International, 1-21.

Wastewater Treatment Plant in Ablah now out of operation because of economic cirsis.